miércoles, 24 de octubre de 2012

DIA DE LA CIENCIA ALEJANDRIA

DÍA DE LA
        CIENCIA 
          ALEJANDRIA


Con motivo de la celebración del DÍA DE LA CIENCIA ALEJANDRINA, el área de Ciencias naturales y Educación Ambiental ha programado la visita al museo de Ciencia y Juego de la Universidad Nacional de Colombia,el día 30 de octubre de 2012, con los grados cuarto a once.
Ejercicio pedagógico que nos va a permitir ampliar y poner en practica los conceptos trabajados en el área durante el año.Cada grupo estará acompañado por su director de grupo .La actividad inicia a las 7:30 a.m. hora en que iniciaremos el desplazamiento hacia la universidad y regresaremos a la 1:30 p.m. Una vez en el colegio se llevará a cabo una actividad de socializacion y evaluación de la actividad mediante un ejercicio escrito que tendrá valoración para el Cuarto periodo, en las asignaturas de  Biología, Físico química, Química y Física.
El valor por concepto de entrada y transporte es de diez mil pesos ($ 10000), los cuales debe hacer llegar a mas tardar el día viernes de 26 de Octubre.
RECOMENDACIONES
1. Llevar un refrigerio . No llevar botellas de vidrio.
2.Pueden llevar un balón por curso.
3.Sudadera con los zapatos deportivos blancos MUY LIMPIOS.
RECORDEMOS QUE LA PRESENTACIÓN Y EXCELENTE COMPORTAMIENTO EN LAS ACTIVIDADES EXTRA ESCOLARES SON LA IMAGEN DE NUESTRO COLEGIO.

miércoles, 3 de octubre de 2012

Máquinas simples y compuestas
Batán
Cuando la máquina es sencilla y realiza su trabajo en un solo paso, nos encontramos ante una máquina simple. Muchas de estas máquinas son conocidas desde la prehistoria o la antigüedad y han ido evolucionando incansablemente (en cuanto a forma y materiales) hasta nuestros días.
Algunas inventos que cumplen las condiciones anteriores son: cuchillo, pinzas, rampa, cuña, polea simple, rodillo, rueda, manivela, torno, hacha, pata de cabra, balancín, tijeras, alicates, llave fija...
Las máquinas simples se pueden clasificar en tres grandes grupos que se corresponden con el principal operador del que derivan: palanca, plano inclinado y rueda.

Palanca

Cascanueces. Ejemplo de uso de la palanca
La palanca es un operador compuesto de una barra rígida que oscila sobre un eje (fulcro). Según los puntos en los que se aplique la potencia (fuerza que provoca el movimiento) y las posiciones relativas de eje y barra, se pueden conseguir tres tipos diferentes de palancas a los que se denomina: de primero, segundo y tercer género (o grado).
El esqueleto humano está formado por un conjunto de palancas cuyo punto de apoyo (fulcro) se encuentra en las articulaciones y la potencia en el punto de unión de los tendones con los huesos; es por tanto un operador presente en la naturaleza.
De este operador derivan multitud de máquinas muy empleadas por el ser humano: cascanueces, alicates, tijeras, pata de cabra, carretilla, remo, pinzas...

Plano inclinado

El plano inclinado es un operador formado por una superficie plana que forma un ángulo oblicuo con la horizontal.
Las rampas que forman montañas y colinas son planos inclinados, también pueden considerarse derivados de ellas los dientes y las rocas afiladas, por tanto este operador también se encuentra presente en la naturaleza.
De este operador derivan máquinas de gran utilidad práctica como: broca, cuña, hacha, sierra, cuchillo, rampa, escalera, tornillo-tuerca, tirafondos...
Broca. Ejemplo de uso del plano inclinado

Rueda

Polea. Ejemplo de uso de la rueda
La rueda es un operador formado por un cuerpo redondo que gira respecto de un punto fijo denominado eje de giro.
Normalmente la rueda siempre tiene que ir acompañada de un eje cilíndrico (que guía su movimiento giratorio) y de un soporte (que mantiene al eje en su posición).
Aunque en la naturaleza también existen cuerpos redondeados (troncos de árbol, cantos rodados, huevos...), ninguno de ellos cumple la función de la rueda en las máquinas, por tanto se puede considerar que esta es una máquina totalmente artificial.
De la rueda se derivan multitud de máquinas de las que cabe destacar: polea simple, rodillo, tren de rodadura, noria, polea móvil, polipasto, rodamiento, engranajes, sistema correa-polea...

Máquinas compuestas

Introducción

Cuando no es posible resolver un problema técnico en una sola etapa hay que recurrir al empleo de una máquina compuesta, que no es otra cosa que una sabia combinación de diversas máquinas simples, de forma que la salida de cada una de ellas se aplica directamente a la entrada de la siguiente hasta conseguir cubrir todas las fases necesarias.
Las máquinas simples, por su parte, se agrupan dando lugar a los mecanismos, cada uno encargado de hacer un trabajo determinado. Si analizamos un taladro de sobremesa podremos ver que es una máquina compuesta formada por varios mecanismos: uno se encarga de crear un movimiento giratorio, otro de llevar ese movimiento del eje del motor al del taladro, otro de mover el eje del taladro en dirección longitudinal, otro de sujetar la broca, otro...
Mecanismos del taladro de sobremesa
La práctica totalidad de las máquinas empleadas en la actualidad son compuestas, y ejemplos de ellas pueden ser: polipasto, motor de explosión interna (diesel o gasolina), impresora de ordenador, bicicleta, cerradura, lavadora, video...


APLICACION DE LAS PALANCAS AL BRAZO HIDRAULICO:

En la figura se puede apreciar que las palancas que vamos a utilizar en nuestro proyecto serán de tercer tipo o de tercer grado ya que en este tipo de palancas la fuerza aplicada debe ser mayor a la fuerza a levantar y en nuestro trabajo es de vital importancia poder levantar objetos. Además se utilizarán palancas múltiples ya que es brazo que construiremos constará de dos hasta cuatro palancas para poder lograr el cometido. Las palancas que utilizaremos serán hechas de un material resistente preferiblemente de madera y sostenidas en sus ejes por piezas metálicas, que permitirán obtener un movimiento circular en cada una de las palancas y un movimiento rotatorio en su eje para poder girar el brazo en distintas direcciones.









La primera ley de Newton, conocida también como Ley de inercía, nos dice que si sobre un cuerpo no actua ningún otro, este permanecerá indefinidamente moviéndose en línea recta c

Maquinas compuestas

maquinas-compuestas
La manera más apropiada de comenzar este artículo será sin duda, en la medida que existe mucha gente que lo ignora, tratar de explicar sencilla y apropiadamente qué es, en realidad, una maquina compuesta. Pues bien: Dicha expresión ha de aplicarse a todo sistema de mecanismos en el que las distintas variables son, siempre, maquinas simples. Profundicemos un poco esta muy técnica definición.

Para poder entender lo que es una maquina compuesta debemos primero, antes que nada, saber a la perfección de qué hablamos cuando nos referimos a maquinas simples. Solo una vez que hayamos sido capaces de comprender cabalmente el funcionamiento de aquellas, seremos libres, entonces, de dar el siguiente paso; tratar de hacernos una idea bien clara de qué es lo que la palabra “sistema” en realidad, al fin y al cabo, quiere decir.
La palabra sistema está, hoy en día, en la boca de todo el mundo. Sin embargo, si uno se anima a preguntar por ahí, suele descubrir que son muy pocas las personas que efectivamente saber definir la palabra sistema. No todo lo que la gente suele llamar sistema es, en realidad, tal cosa. Despejemos entonces las dudas; es cosa bastante sencilla: Un sistema no es más que una interrelación de variables. O sea: consideramos variable a cualquier cosa que se pueda experimentar y medir y, luego, consideramos sistema a una interacción dada de variables.
La característica fundacional de todo sistema ha de ser, entonces, el hecho de que la alteración de alguna de sus variables implicará, entonces, sí o sí, la aliteración de, por lo menos, otra.

Vemos un ejemplo sencillo; un juego de ajedrez (es indistinto si el lector sabe o no jugar)Cuando se mueve una pieza, sea la que sea, ese movimiento produce una transformación en el sistema todo; todas las demás piezas pasan, inmediatamente, a verse alcanzadas por el cambio que implica la pieza movida. Así, el ajedrez es, de todos los divertimentos, el más sistémico de todos.
Ahora bien: Fusionando las dos partes hasta aquí explicitadas (el funcionamiento de las maquinas simples y el funcionamiento de un sistema) maquina-compuesta-excavadora
es como sale definitivamente a la luz el significado de la expresión maquina compuesta. Se trata de un sistema en el que cada una de las maquinas simples es, ni más ni menos, que un mecanismo, o sea, una variable. Analicemos, ahora que ya tenemos las cosas más claras, como funciona esta interrelación de variables mecánicas.

Ya lo dijimos; una maquina compuesta está constituida por varias (como mínimo dos) máquinas simples. Cada una de esas maquinas simples es un mecanismo del sistema; al recibir una determinada energía, la maquina simple produce transformaciones en la misma y luego, en ves de liberarla como resultado, la “pasa” a otra maquina simple que, a su vez, produce todavía más modificaciones. Construir una maquina compuesta significa poner en interrelación una determinada cantidad de maquinas simples.
Todo lo demás es cosa bastante obvia; si en una maquina compuesta falla alguna de las maquinas simples esto significará, consecuentemente, el fallo absoluto del sistema todo. La reparación de maquinas compuestas implica, entonces, saber encontrar cuál es, de todas, la maquina simple que está produciendo el problema. Cuando se soluciona el conflicto con el mecanismo particular, este vuelve a trabajar armoniosamente con los demás y así, todos juntos, reestablecen la capacidad operativa del sistema (de la maquina compuesta). Cuantas más maquinas simples contenga el sistema, más compuesta será la maquina que dicho sistema implique.

Prácticamente todos los artefactos a que apelamos diariamente son, en realidad, forma más o menos complejas de maquinas compuestas. La video casetera y la motocicleta, las impresoras y las maquinas de secar la ropa. El mundo no sería lo que es sin el inapreciable trabajo de las maquinas compuestas.
maquinas-tecnologiaY
lo que caracteriza a una maquina, por sobre cualquier otro sistema natural, es que la misma es, siempre, diseñada y construida por el intelecto del hombre para la funcionalidad y comodidad del propio hombre. Se trata, simple y complejamente, de poner en interrelación funcional las distintas fuerzas de la naturaleza con las leyes físicas y químicas que las rigen. Todos los pasos que da la tecnología son, en realidad, esto es lo que los hace verdaderamente geniales, un aumento en los poderes que el ser humano es capaz de esgrimir sobre su entrono. Aprender a individualizar las energías y, luego capacitarse para ponerlas en interrelación funcional; he ahí, muy esencialmente simplificado, el tema todo que desde las épocas más pretéritas ha significado la ciencia en tanto construcción de maquinarias.
La maquina compuesta es, así, la sucesora necesaria de la maquina simple. Porque en el terreno de las maquinas las cosas no funcionan como saben hacerlo en el seres vivos; en el mundo material el todo no es otra cosa más que la correcta suma de las partes

CONCEPTO DE PALANCA:

La palanca es una máquina simple que se emplea en una gran variedad de aplicaciones. Probablemente, incluso, las palancas sean uno de los primeros mecanismos ingeniados para multiplicar fuerzas. Es cosa de imaginarse el colocar una gran roca como puerta a una caverna o al revés, sacar grandes rocas para habilitar una caverna. Con una buena palanca es posible mover los más grandes pesos y también aquellos que por ser tan pequeños también representan dificultad para tratarlos.

Básicamente está constituida por una barra rígida, un punto de apoyo o Fulcro y dos o más fuerzas presentes: una fuerza a la que hay que vencer, normalmente es un peso a sostener o a levantar o a mover, y la fuerza que se aplica para realizar la acción que se menciona. La distancia que hay entre el punto de apoyo y el lugar donde está aplicada cada fuerza, en la barra rígida, se denomina brazo. Así, a cada fuerza le corresponde un cierto brazo. Como en casi todos los casos de máquinas simples, con la palanca se trata de vencer una resistencia, situada en un extremo de la barra, aplicando una fuerza de valor más pequeño que se denomina potencia, en el otro extremo de la barra.

En una palanca podemos distinguir entonces los siguientes elementos:
-El punto de apoyo o fulcro.
-Potencia: la fuerza (en la figura de abajo: esfuerzo) que se ha de aplicar.
-Resistencia: el peso (en la figura de abajo: carga) que se ha de mover.





PRINCIPIO DE GALILEO GALILEI:

Se cuenta que el propio Galileo Galilei habría dicho: "Dadme un punto de apoyo y moveré el mundo". En realidad, obtenido ese punto de apoyo y usando una palanca suficientemente larga, eso es posible. En nuestro diario vivir son muchas las veces que “estamos haciendo palanca”. Desde mover un dedo o un brazo o un pie hasta tomar la cuchara para beber la sopa involucra el hacer palanca de una u otra forma. Ni hablar de cosas más evidentes como jugar al balancín, hacer funcionar una balanza, usar un cortaúñas, una tijera, un sacaclavos, etc. Casi siempre que se pregunta respecto a la utilidad de una palanca, la respuesta va por el lado de que “sirve para multiplicar una fuerza”, y eso es cierto pero prevalece el sentido que multiplicar es aumentar, y no es así siempre, a veces el multiplicar es disminuir al multiplicar por un número decimal por ejemplo.





TIPOS DE PALANCAS:

La ubicación del fulcro respecto a la carga y a la potencia o esfuerzo, definen el tipo de palanca:

-Palanca de primer tipo o primera clase: Se caracteriza por tener el fulcro entre la fuerza a vencer y la fuerza a aplicar. Esta palanca amplifica la fuerza que se aplica; es decir, consigue fuerzas más grandes a partir de otras más pequeñas. Algunos ejemplos de este tipo de palanca son: el alicates, la balanza, la tijera, las tenazas y el balancín. Algo que desde ya debe destacarse es que al accionar una palanca se producirá un movimiento rotatorio respecto al fulcro, que en ese caso sería el eje de rotación.



-Palanca de segundo tipo o segunda clase: Se caracteriza porque la fuerza a vencer se encuentra entre el fulcro y la fuerza a aplicar. Este tipo de palanca también es bastante común, se tiene en lo siguientes casos: carretilla, destapador de botellas, rompenueces. También se observa, como en el caso anterior, que el uso de esta palanca involucra un movimiento rotatorio respecto al fulcro que nuevamente pasa a llamarse eje de rotación.



-Palanca de tercer tipo o tercera clase: Se caracteriza por ejercerse la fuerza “a aplicar” entre el fulcro y la fuerza a vencer. Este tipo de palanca parece difícil de encontrar como ejemplo concreto, sin embargo el brazo humano es un buen ejemplo de este caso, y cualquier articulación es de este tipo, también otro ejemplo lo tenemos al levantar una cuchara con sopa o el tenedor con los tallarines, una corchetera funciona también aplicando una palanca de este tipo. Este tipo de palanca es ideal para situaciones de precisión, donde la fuerza aplicada suele ser mayor que la fuerza a vencer. Y, nuevamente, su uso involucra un movimiento rotatorio.



-Palancas múltiples: Varias palancas combinadas.Por ejemplo: el cortaúñas es una combinación de dos palancas, el mango es una combinación de 2º género que presiona las hojas de corte hasta unirlas. Las hojas de corte no son otra cosa que las bocas o extremos de una pinza y, constituyen, por tanto, una palanca de tercer género. Otro tipo de palancas múltiples se tiene en el caso de una máquina retroexcavadora, que tiene movimientos giratorios (un tipo de palanca), de ascenso y descenso (otra palanca) y de avanzar o retroceder (otra palanca).




on velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento. Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento. La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actua ninguna fuerza neta se mueve con velocidad constante.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.

La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.
La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,
1 N = 1 Kg · 1 m/s2
La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actua sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m·v)/dt = m·dv/dt + dm/dt ·v
Como la masa es constante
dm/dt = 0
y recordando la definición de aceleración, nos queda
F = m a
tal y como habiamos visto anteriormente.
Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actua sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:
0 = dp/dt
es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimiento: si la fuerza total que actua sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.

Tal como comentamos en al principio de la Segunda ley de Newton las fuerzas son el resultado de la acción de unos cuerpos sobre otros.
La tercera ley, también conocida como Principio de acción y reacción nos dice que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.
Esto es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba.
Cuando estamos en una piscina y empujamos a alguien, nosotros tambien nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros.